miércoles, 9 de abril de 2008

INSTRUMENTO TECNOLOGICO: EL MULTIMETRO







¿QUÉ ES UN MULTIMETRO?




El amperímetro, el voltímetro, y el ohmiómetro utilizan un galvanómetro para hacer su medición. La diferencia entre estos aparatos es el circuito utilizado con el movimiento básico. Es por lo tanto claro que se puede diseñar un instrumento para realizar las tres funciones de medición. Este dispositivo, tiene un interruptor de función que selecciona el circuito apropiado al galvanómetro y es llamado comúnmente multímetro o medidor-volt-ohm-miliampere (VOM).
Uno de los instrumentos de propósitos más versátiles, capaz de medir voltajes de cd y ca, corriente y resistencia, es el multímetro electrónico de estado sólido o VOM. Aunque los detalles del circuito varían de un instrumento a otro, un multímetro electrónico generalmente contiene los siguientes elementos:
Amplificador de cd de puente – equilibrado y medidor indicador.
Atenuador de entrada o interruptor de RANGO, para limitar la magnitud del voltaje de entrada al voltaje deseado.
Sección de rectificación para convertir el voltaje de ca de entrada en voltaje de cd proporcional.
Batería interna y un circuito adicional para proporcionar la capacidad para medir resistencias.
Interruptor de FUNCIÓN, para seleccionar las distintas funciones de medición del instrumento.
Además el instrumento suele incluir una fuente de alimentación para su operación con la línea de ca y, en la mayoría de los casos, una batería para operarlo como instrumento portátil de prueba.
Los multímetros analógicos son instrumentos de laboratorio y de campo muy útiles y versátiles, capaces de medir voltaje (en cd y ca), corriente, resistencia, ganancia de transistor, caída de voltaje en los diodos, capacitancia e impedancia. Se les llama por lo general multimeters (en inglés se les llama VOM, volt ohm miliammeters).
En últimas fechas se han ampliado y mejorado las posibilidades de funcionamiento de esos medidores se ha aumentado en forma considerable sus posibilidades y su exactitud. Además, mediante el empleo de amplificadores de entrada con transistores de efecto de campo (FET) para mediciones de voltaje cd, sus impedancias rebasan con frecuencia a los 100 MΩ. Por ultimo la escala del óhmetro ya no se ha de llevar a cero para compensar los cambios internos del voltaje de batería o los cambios de escala.
Las mediciones de voltaje se pueden efectuar sobre el rango de 0.4 mV hasta 1000 V con exactitudes de 0.1 por ciento. Las mediciones de corriente se pueden llevar a cabo desde 0.1 μA hasta 10 A con exactitudes de 0.2 por ciento. Se miden resistencias tan altas como 40 MΩ con exactitud de 1 por ciento. Las mediciones de resistencia menores tienen una exactitud de 0.2 por ciento.
Los multímetros digitales han tomado el lugar de los multímetros con movimientos de D'Arsonval por dos razones principales: mejor exactitud y eliminación de errores de lectura. Sin embargo con frecuencia se agrega una escala analógica en la escala digital para dar una indicación visual de entradas que varían con el tiempo. La posibilidad de observar la indicación del medidor en forma analógica es muy importante cuando se estén localizando fallas en sistemas de instrumentación, por ejemplo, la rapidez con que cambia una variable, al igual que su magnitud, pueden dar indicaciones valiosas en muchas situaciones de localización de problemas.
Los Multímetros Digitales
La mayoría de los multímetros digitales se fabrican tomando como base ya sea un convertidor A / D de doble rampa o de voltaje a frecuencia, con ajuste de rango. Para dar flexibilidad para medir voltajes en rangos dinámicos más amplios con la suficiente resolución, se emplea un divisor de voltaje para escalar el voltaje de entrada. En la Fig. 5-16 se muestra un diagrama de bloques de un multímetro digital completo.
Para lograr la medición de voltajes de ca, se incluye un rectificador en el diseño del medidor. Como las exactitudes de los rectificadores no son tan altas como las de los circuitos de medición de voltaje de cd, las exactitudes general de los instrumentos de medición de ca es menor que cuando se miden voltajes de cd (las exactitudes para voltajes de ca van desde + 1.012 hasta + 1 por ciento + 1 digito). Las corrientes se miden haciendo que el voltímetro digital determine la caída de voltaje a través de una resistencia de valor conocido y exacto.
Aunque el valor de una resistencia se puede especificar con mucha exactitud, hay cierto error adicional debido al cambio de resistencia como función del efecto de calentamiento de la corriente que pasa a través de ella.
Además, se debe tener cuidado al emplear la función de medición de corriente. No se debe permitir que pase demasiada corriente a través de la resistencia. Las exactitudes típicas de las mediciones de corriente de cd van desde + 0.03 hasta + 2 por ciento de la lectura + 1 dígito, mientras que para corriente alterna son de + 0.05 a + 2 por ciento + 1 dígito.
El voltímetro digital se convierte en óhmetro cuando se incluye en él una fuente muy exacta de corriente. Esta fuente circula corriente a través de la resistencia que se mide y el resto de los circuitos del vóltmetro digital monitorea la caída de voltaje resultante a través del electo. La fuente de corriente es exacta sólo para voltajes menores que el voltaje de escala completa del vóltmetro digital. Si la resistencia que se mide es demasiado grande, la corriente de prueba de la fuente de poder disminuirá. Las exactitudes de los voltímetros digitales multiusos que se emplean apara medir la resistencia van desde + 0.002 por ciento de la lectura + 1 dígito hasta + 1 por ciento de la lectura + 1 dígito.
Muchos multímetros digitales son instrumentos portátiles de baterías. Algunos se diseñan con robustez para permitirles soportar los rigores de las mediciones de campo. Otros poseen características tales como operación de sintonización automática de rango (lo cual significa que el medidor ajusta de manera automática sus circuitos de medición para el rango de voltaje, corriente o resistencia), compatibilidad con salida decimal codificada binaria o IEEE-488, y medición de conductancia y aun de temperatura.

Para satisfacer las necesidades de medición de equipos y sistemas eléctricos en AT y BT, la empresa LOVATO ofrece multímetros digitales serie DMK, que brindan lecturas precisas y estables a precios competitivos.
Estos verdaderos analizadores de redes proporcionan mediciones de 47 a 251 parámetros eléctricos (según el modelo), incluyendo valores de corriente y voltaje entre líneas y fase, frecuencia, potencia activa, reactiva y aparente, desplazamiento del factor de potencia, energía consumida y generada, armónicos hasta Nº22, demanda máxima y memorización de valores promedios, mínimos y máximos. Además, pueden automatizar sistemas de protección mediante salidas digitales programables, con funciones de máximo y mínimo de los parámetros monitoreados.







FORMAS DE MEDICION

EL CAPACITOR E INDUCTOR







Capacitores








Un capacitor está compuestos de dos terminales cuyo propósito primario es introducir capacitancia a un circuito eléctrico. La capacitancia se define como la razón de carga almacenada a la diferencia de voltaje entre dos placas o alambres conductores.
C=Q/V
Q = carga almacenada
V = diferencia de potencial entre bornes
Un capacitor es un elemento de dos terminales que consta de dos placas conductoras separadas por un material no conductor. La carga eléctrica se almacena en las placas, y el espacio entre las placas se llena con un material dieléctrico. En su funcionamiento normal, las dos placas poseen el mismo valor de carga pero de signos contrarios. El valor de la capacitancia es proporcional al área superficial del material dieléctrico e inversamente proporcional a su espesor. Para obtener mayor capacitancia se requiere de una estructura muy delgada con un área grande.
Simbolo del Capacitor

ASOCIACION DE CAPACITORES
CAPACITORES EN SERIE
Por ejemplo la capacidad equivalenete de 3 capacitores en serie es :

1/c equiv = (1/ c1)+ (1/ c2)+ (1/ c3)

Como regla podemos pensar que es como resistencias en paralelo

CAPACITORES EN PARALELO
Por ejemplo la capacidad equivalenete de 3 capacitores en paralelo es :

C equiv =C1 + C2 + C3

Como regla podemos pensar que es como resistencias en serie



GENERALIDADES
Estos componentes deben operar a frecuencias altas, por lo que deben presentar bajas inductancias y pérdidas. En términos generales, se pueden utilizar capacitores con diélectrico plástico o cerámico, dependiendo de la aplicación. Sin embargo, en muchos casos se prefiere el uso de capacitores hechos especialmente para aplicaciones de conmutación.
La frecuencia de resonancia de un capacitor se puede determinar por medio de los elementos parásitos, los cuales implican una resistencia y una inductancia propias del capacitor. En general, el capacitor se modela con el siguiente circuito equivalente:




TIPOS DE CAPACITORES
Existen diversos tipos de capacitores, los cuales posee propiedades y carcaterísticas físicas diferentes, entre los cuales se encustran:
Capacitores eléctricos de aluminio
Capacitores de tantalio
Capacitores eléctricos de cerámica
Capacitores Papel y Plasticos
Micas y Vidrios

Característias de los capacitores eléctricos de aluminio:
Son populares debido a su bajo costo y gran capacitancia por unidad de volumen Existen en el mercado unidades polarizadas y no polarizadas. Son del tipo de hojas metálicas, con un electrólito que puede ser acuoso, en
pasta o "seco" (sin agua).
La capacitancia está estrechamente relacionada con la temperatura y puede decrecer en un orden de magnitud desde la temperatura ambiente hasta -55° C. Esta variación se reduce en capacitores de
primera calidad y en productos recientes con formulaciones electrolíticas más complicadas.
No están diseñados para aplicaciones a frecuencias elevadas, y la impedancia puede alcanzar un valor mínimo a frecuencias tan bajas como 10 kHz.
La corriente de fuga disminuye durante la operación. En el uso normal , la corriente de fuga aumenta con el voltaje aplicado y con la temperatura. Como guía muy general, la corriente se duplica a medida que el voltaje aplicado se incrementa del 50 al 100% del valor nominal, y se duplica por cada 25° C de aumento en la temperatura.
Presentan un decremento gradual en capacitancia sobre un largo periodo, debido a la pérdida de electrólito a través de los sellos, aunque con los tipos recientes de empaque se ha reducido de manera significativa este deterioro, y los capacitores presentan en la actualidad un decremento del 10%, o menor, al cabo de 10 000 horas.
Otro problema que debe observarse implica el empleo de ciertos agentes limpiadores en los tableros de circuitos impresos. El cloro de los solventes de hidrocarburos halogenados, como el freón, puede penetrar por los sellos y atacar la estructura interna del aluminio, provocando la falla en poco tiempo.
Para la limpieza se recomienda xileno, alcoholes y ciertos tipos de detergentes exentos de cloro.

Característica de los capacitores eléctricos de tantalio:
Son más flexibles y confiables, y presentan mejores características que los electrolíticos de aluminio, pero también su costo es mucho más elevado.
Existen tres tipos:
Capacitores de hojas metálicas (láminas):
Se elaboran del mismo modo que los electrolíticos de aluminio
Los alambres conductores de tantalio se sueldan por puntos tanto a la lámina del ánodo como a la del cátodo,las cuales se arrollan después con separadores de papel en un rollo compacto. Este rollo se inserta dentro de una envoltura metálica y, a fin de mejorar el rendimiento, se agrega un electrólito idóneo, como etilenglicol o dimetilformamida con nitruro de amonio, pentaborato de amonio o polifosfatos.
Capacitores de hojas de tantalio
Existen en el mercado en tamaños que varían de 0.12 hasta 3 500 mF, a voltajes hasta de 450 V
La mayor parte de las aplicaciones para este tipo de capacitor se encuentran en los intervalos de voltaje superiores, en los que no es posible aplicar los condensadores de tantalio húmedo, y cuando se requieren calidades superiores a las de los electrolíticos de aluminio, a pesar del mayor costo.
Las desventajas, en comparación con otros tipos de capacitores de tantalio,son: gran tamaño, elevadas corrientes de fuga y gran variación en la capacitancia con la temperatura.
La principal aplicación de estos condensadores se encuentra en filtros de fuentes de alimentación.
Capacitores de tantalio sólido:
Parecido a la versión húmeda, en cuanto a sus etapas iniciales de manufactura.
No hay líquido que se evapore, y el electrólito sólido es estable.
La variación de la capacitancia es muy pequeña: ±10% respecto de su valor a temperatura ambiente en todo el intervalo de temperatura desde -55 hasta 125° C.
Por desgracia, ni el electrólito ni el dieléctrico presentan las cualidades de autorreparación asociadas con otros capacitores electrolíticos.
Para proteger los condensadores de fallas tempranas debidas a defectos del óxido y del electrólito se recomienda su envejecimiento conectado durante 100 h a voltaje nominal y temperatura máxima, empleando una fuente de energía de baja impedancia. Además, se recomienda que el voltaje de operación no exceda el 60% del voltaje nominal.
Características de los capacitores eléctricos de Cerámica
Bajo costo, reducido tamaño, amplio intervalo de valor de capacitancia y aplicabilidad general en la electrónica.
Son particularmente idóneos para aplicaciones de filtrado, derivación y acoplamiento de circuitos híbridos integrados, en las que es posible tolerar considerables cambios en la capacitancia.
Se elaboran en forma de
disco, como capacitores de capas múltiples o monolíticos, o en forma tubular.
El material dieléctrico es principalmente titanato de bario, titanato de calcio o dióxido de titanio con pequeñas cantidades de otros aditivos para obtener las características deseadas.


Caracteristicas de los capacitores eléctricos de papel o plastico:
El papel, el plástico y las combinaciones de ambos se utilizan en una gran variedad de aplicaciones, como filtrado, acoplamiento, derivación, cronometraje y suspensión de ruido
Son capaces de funcionar a altas temperaturas, poseen alta resistencia de aislamiento, buena estabilidad.
La propiedad de autorreparación de las películas metálicas es bastante útil en ciertas aplicaciones.
La disponibilidad de películas extremadamente delgadas y la gran variedad de materiales proporciona la flexibilidad necesaria para un gran intervalo de aplicaciones.
La capacitancia varía con la temperatura de un dieléctrico a otro.


Los capacitores de papel y plástico pueden emplearse a altas frecuencias, según el tamaño y la longitud de las puntas.

Característica de los capacitores de mica y vidrio:
Los capacitores con dieléctrico de mica y vidrio se aplican cuando se requiere carga eléctrica alta y excelente estabilidad con respecto a la temperatura y frecuencia.
Los capacitores de mica existen en el mercado con una gran diversidad detamaños.
Tanto los capacitores de mica como los de vidrio son estables con respecto a la temperatura. Para algunos valores de capacitancia es posible que el coeficiente de temperatura sea cero.
Ambos tipos de capacitores pueden operar a alta frecuencia. La frecuencia de autorresonancia es de unos 10 MHz para grandes valores del capacitor y mayor de 100 MHz para valores más pequeños.

En términos generales podemos decir que la capacitancia es la cualidad que tienen los diferentes tipos de condensadores para liberar una cierta cantidad de energía en un determinado momento.

Hoy en día los condensadores son de mucha utilidad para la fabricación de equipos electónicos, como radios, ordenadores, televisores, etc., ellos proporcionan el almacenamiento temporal de la energía en un circuito.
Todas esta teorias de la capacitancia de los condesadores que hoy se utilizan nacieron gracias a la iniciativa de el científico Michael Faraday, ya que su Experimental Researches in Electricity, a finales de siglo XIX pudo descubrir gran parte de lo que conocemos como la Leyes de Electricidad y Magnetismo.




Código de colores de los capacitores


Aunque parece difícil, determinar el valor de un capacitor o condensador se realiza sin problemas. Al igual que en las resistencias este código permite de manera fácil establecer su valor
El código 101:
Muy utilizado en condensadores cerámicos. Muchos de ellos que tienen su valor impreso, como los de valores de 1 uF o más
Donde: uF = microfaradio
Ejemplo: 47 uF, 100 uF, 22 uF, etc.
Para capacitores de menos de 1 uF, la unidad de medida es ahora el pF (picoFaradio) y se
expresa con una cifra de 3 números. Los dos primeros números expresan su significado por si mismos, pero el tercero expresa el valor multiplicador de los dos primeros
Ejemplo:
Un condensador que tenga impreso 103 significa que su valor es 10 + 1000 pF = 10, 000 pF. Ver que 1000 son 3 ceros (el tercer número impreso).En otras palabras 10 más 3 ceros = 10 000 pF

- INDUCTANCIAS -
Inductancias.- Llamaremos inductancia al campo magnético que crea una corriente eléctrica al pasar a través de una bobina de hilo conductor enrrollado alrededor de la misma que conforma un inductor. Un inductor puede utilizarse para diferenciar señales cambiantes rápidas o lentas. Al utilizar un inductor con un condensador, la tensión del inductor alcanza su valor máximo a una frecuencia dependente de la capacitancia y de la inductancia. La inductancia depende de las características fisicas del conductor y de la longitud del mismo. Si se enrolla un conductor, la inductancia aumenta. Con muchas espiras (vueltas) se tendrá más inductancia que con pocas. Si a esto añadimos un núcleo de ferrita, aumentaremos considerablemente la inductancia. La energía almacenada en el campo magnético de un inductor se calcula según la siguiente formula: W = I² L/2 ... siendo: W = energía (julios); I = corriente (amperios; L = inductancia (henrios). El Cálculo de la inductancia: La inductancia de una bobina con una sola capa bobinada al aire puede ser calculada aproximadamente con la fórmula simplificada siguiente: L (microH)=d².n²/18d+40 l siendo:L = inductancia (microhenrios); d = diámetro de la bobina (pulgadas); l= longitud de la bobina (pulgadas); n = número de espiras o vueltas.
Como ya se ha dicho, la unidad para la inductancia es el HENRIO.En una bobina habrá un henrio de inductancia cuando el cambio de 1 amperio/segundo en la corriente eléctrica que fluye a través de ella provoque una fuerza electromotriz opuesta de 1 voltio. Un transformador o dos circuitos magnéticamente acoplados tendrán inductancia mutua equivalente a un HENRIO cuando un cambio de 1 amperio/segundo en la corriente del circuíto primario induce tensión equivalente a 1 voltio en el circuito secundario.